Studies on the Enantioselective Iminium Ion Trapping of Radicals Triggered by an Electron-Relay Mechanism

نویسندگان

  • Ana Bahamonde
  • John J Murphy
  • Marika Savarese
  • Éric Brémond
  • Andrea Cavalli
  • Paolo Melchiorre
چکیده

A combination of electrochemical, spectroscopic, computational, and kinetic studies has been used to elucidate the key mechanistic aspects of the previously reported enantioselective iminium ion trapping of photochemically generated carbon-centered radicals. The process, which provides a direct way to forge quaternary stereocenters with high fidelity, relies on the interplay of two distinct catalytic cycles: the aminocatalytic electron-relay system, which triggers the stereoselective radical trap upon iminium ion formation, and the photoredox cycle, which generates radicals under mild conditions. Critical to reaction development was the use of a chiral amine catalyst, bearing a redox-active carbazole unit, which could rapidly reduce the highly reactive and unstable intermediate generated upon radical interception. The carbazole unit, however, is also involved in another step of the electron-relay mechanism: the transiently generated carbazole radical cation acts as an oxidant to return the photocatalyst into the original state. By means of kinetic and spectroscopic studies, we have identified the last redox event as being the turnover-limiting step of the overall process. This mechanistic framework is corroborated by the linear correlation between the reaction rate and the reduction potential of the carbazole unit tethered to the aminocatalyst. The redox properties of the carbazole unit can thus be rationally tuned to improve catalytic activity. This knowledge may open a path for the mechanistically driven design of the next generation of electron-relay catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of the Stereoselective α-Alkylation of Aldehydes Driven by the Photochemical Activity of Enamines

Herein we describe our efforts to elucidate the key mechanistic aspects of the previously reported enantioselective photochemical α-alkylation of aldehydes with electron-poor organic halides. The chemistry exploits the potential of chiral enamines, key organocatalytic intermediates in thermal asymmetric processes, to directly participate in the photoexcitation of substrates either by forming a ...

متن کامل

Light‐Driven Enantioselective Organocatalytic β‐Benzylation of Enals

A photochemical organocatalytic strategy for the direct enantioselective β-benzylation of α,β-unsaturated aldehydes is reported. The chemistry capitalizes upon the light-triggered enolization of 2-alkyl-benzophenones to afford hydroxy-o-quinodinomethanes. These fleeting intermediates are stereoselectively intercepted by chiral iminium ions, transiently formed upon condensation of a secondary am...

متن کامل

Relay catalysis: combined metal catalyzed oxidation and asymmetric iminium catalysis for the synthesis of bi- and tricyclic chromenes.

A catalytic asymmetric oxidative iminium-allenamine cascade allows the use of propargyl alcohols as stable substrates and yields valuable chiral bicyclic 4H-chromenes. A subsequent Michael addition-condensation domino reaction provides complex tricyclic 4H-chromenes in a highly enantioselective fashion.

متن کامل

Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes.

A method for the efficient enantioselective oxytrifluoromethylation of alkenes has been developed using a copper catalyst system. Mechanistic studies are consistent with a metal-catalyzed redox radical addition mechanism, in which a C–O bond is formed via the copper-mediated enantioselective trapping of a prochiral alkyl radical intermediate derived from the initial trifluoromethyl radical addi...

متن کامل

An Efficient and One-pot Procedure for the Synthesis of Chiral Isoxazolidine via Catalytic Highly Enantioselective 1,3-dipolar cycloaddition

Synthesis of enantiomerically pure isoxazolidine via an asymmetric 1,3- dipolar cycloaddition reaction of nitrone with electron-deficient dipolarophile was described. The process occurs at room temperature in aqueous ethanol as a green solvent and in the presence of a bidendate bis(imine)–Cu(II)triflate complex as catalyst. The reaction mechanism is discussed on the basis of the assignment of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 139  شماره 

صفحات  -

تاریخ انتشار 2017